END OF TERM 2 EXAMS-2019

S.3 CHEMISTRY 545/2

2 HOURS

Instructions:

- This paper consists of two Sections A and B
- Section A consists of 10 structured questions. Attempt all questions in this section. Answers to these questions must be written in the spaces provided ONLY.
- **Section B** consists of **4** semi-structured questions. Attempt **ONLY TWO** questions from this section. Answers to the questions must be written in the answer booklets provided
- In both sections all working must be shown clearly

SECTION A:

All questions are compulsory

 When calcium turnings were added into water in a beaker, bubbles of a colourless gas, and a cloudy solution formed. a) State the identity of: 				
(i) Gas X	(½ mark)			
(ii) The cloudy solution.	(½ mark)			
b) Write equation for the reaction leading to the formation of gas \mathbf{X} .	(1½ mark)			
c) State. (i) How gas \mathbf{X} could be identified in the laboratory.	(1½ marks)			
(ii) One laboratory use of the resultant solution in the beaker.	(1 mark)			
(i) Chromatography	(1 mark)			
(ii) Fractional Crystallization	(1 mark)			
	,and a cloudy solution formed. a) State the identity of: (i) Gas X (ii) The cloudy solution. b) Write equation for the reaction leading to the formation of gas X. c) State. (i) How gas X could be identified in the laboratory. (ii) One laboratory use of the resultant solution in the beaker. a) State the principle on which each of the following methods of separating m (i) Chromatography			

•	nanol Observation	(½ mark)
•	Reason	(½ mark)
		• • • • • • • • • • • • • • • • • • • •
(ii) E	ldible oil	
•	Observation	(½ mark)
•	Reason	(½ mark)
c) Name (ii)	a piece of apparatus that can be used to separate components of the 1	nixture in (b (1 mark)
Ethanol o	btained from glucose can be converted to ethene as shown below.	
$C_{\epsilon}H_{12}$	$O_6 \xrightarrow{STEPI} C_2 H_5 OH \xrightarrow{STEPII} C_2 H_4$	
0 1 112		
a) Name	the process that takes place in	•
		(½ mark)
a) Name (i) Ste	ep I	,
a) Name (i) Ste	ep I	(½ mark)
a) Name (i) Sto(ii) Sto	ep I	(½ mark)

(ii) Calculate the number of moles of ethene that make up J.	(1 mark)
(iii) Give one disadvantage of continued use of J .	(½ mark)
a) Name one crystalline and one amorphous allotrope of carbon and in ouse of the allotrope that you have named.	each case state or
(i) Crystalline carbon allotrope.	(½ mark)
Use	(½ mark)
(ii) Amorphous carbon allotrope	(½ mark)
Use	(½ mark)
b) Write equation for the reaction to show	
(i) Combustion of carbon monoxide	(1 mark)
(ii) Reduction of iron (II, III) oxide by carbon monoxide.	(1½ mark)
c) State one practical application of the reaction in (b) (ii)	(½ mark)
Under suitable conditions, hydrogen peroxide, solution H_2 $O_{2 (aq)}$ can deproduce oxygen.	
a) (i) Write equation for the decomposition of hydrogen peroxide.	(1½ mark)

rapidl	/. 		(1 mark)
		was lowered into a jar of oxygen.	
	te what was observed	· · · · · · · · · · · · · · · · · · ·	(1 mark)
(ii) W	• • • • • • • • • • • • • • • • • • • •	ne reaction that took place.	(1½ mark
		ts W , chlorine and Y are 15, 17 and ration of an atom of element.	1 20 respectively.
(i) W	ie electronic configur	action of all acom of element.	(½ mark)
(ii) Y			(½ mark)
· ·	hich one of the eleme	ents W or Y would form a chloride g point.	which is (½ mark)
	volatile liquid at roon	n temperature.	(½ mark)
	asons for your statem	ent in (b)	(1 mark)
d) State h	ow a chloride ion in a	queous solution can be identified.	(1½ mar
7. (a)	2.2% hydrog	with the formula $H_xC_yO_z$.n H_2O congen and 71.1% oxygen by mass. Def (H=1, C=12, O=16)	

(ii) 	Dete	rmine the values of x, y and z in the formula of \mathbf{Q} . (H _x	C _y O _z	= 90) (1½ ma
			•••••	
(b)	of a (cm ³ of a solution containing 6.3g of Q per litre require 0.1 M sodium hydroxide solution for complete neutral	lizatio	on.
	(i)	Calculate the concentration of Q in moles per dm ⁻³	of the	e solution. (02 marks
• • • • • •			•••••	
•••••	•••••		• • • • • • • • • • • • • • • • • • • •	•••••
			•••••	
			•••••	
			• • • • • • • • • • • • • • • • • • • •	
			•••••	
	(ii)	Deduce the value of n .		$(1\frac{1}{2})$ mc
•••••	• • • • • • • •		•••••	
•••••	• • • • • • • •		•••••	•••••
			• • • • • • • • •	
			• • • • • • • • • • • • • • • • • • • •	
Write		uctural formula of		(1 1)
	(i)	ethene		(1 mark)
	•••••		• • • • • • • •	•••••
	(ii)	ethane	•••••	(1 mark)
			•••••	
<i>a</i> >				
(b)	(i)	Name one reagent which can be used to distinguish ethane.	betw	een ethene a (1 mark)
			•••••	
	 (ii)	State what would be observed if ethene was treated	th	the reagent w

(c)	Write	equation for the polymerization of ethene (1 max	rk)
	=	nd cleaner burnt rubbish at the furthest corner of the school compo	ound.
	•	throughout the school.	
(a)	(i)	Name the process by which the smoke spread throughout the sch	100l. (01m
	(ii)	Define the process you have named in (a) (i)	 (01m
 (b)	 State:		
	(i)	What the process you have defined in (a)(ii) show about smoke?	(01m
	(ii)	One reason why rubbish should not be burnt.	 (01m
 (c)		one substance which can be used to show that the process you hard in (a)(i) also takes place in liquids.	ve (01m
(a)		and and graphite are some of the common allotropes of carbon. what is meant by the term allotropy.	(01m

(02m	ks)	Give two uses of each allotrope based on the above properti	es.
	••••••		
	(ii)	State one other difference between graphite and diamond.	(½ mk
(c)		n – 12 and carbon – 14 are the two common atoms of carbon n – 14 is used extensively in determining the ages of fossils.	and
	(i)	One word which means determining the ages of fossils using	carbon – 14 (½ mk
	(ii)	One word which means the relationship between atoms like Carbon- 12 and Carbon – 14.	(½ ml
	(iii)	The property of carbon – 14 that is applied when it is used in the ages of fossils.	determining (½ ml
		SECTION B Answer only two questions from this section.	
	_	Q consists of 26.7% carbon and 2.2% hydrogen by mass; the	rest being
oxyge Calcul		mpirical formula of \mathbf{Q} . ($\mathbf{H} = 1$, $\mathbf{C} = 12$, $\mathbf{O} = 16$)	3½ marks)
(i) Su	iggest ho	lution of Q turns blue litmus paper pale red. where \mathbf{Q} we the \mathbf{P}^{H} value of a $\mathbf{2M}$ aqueous solution of \mathbf{Q} would compare the hydrochloric acid. Give a reason for your suggestion.	with the P ^H 2 marks)

(ii) Pre	edict how	w Q would react with magnesium powder.	(1½ arks)		
(iii) W	(iii) Write an ionic equation for the reaction that you have predicted in (b) (ii) (1½ marks)				
magnesiun	n powde	ution containing 4.5g of Q per dm ³ of solution required exacter for complete reaction. of Q reacts with 1 mole of magnesium.)	etly 0.12g of		
	concen	tration of \mathbf{Q} in mole per dm ³ .	(3 marks)		
(ii) The	e formul	la mass of Q .	(2 marks)		
d) Determi	ine the r	molecular formula of Q.	(2 marks)		
		conditions iron can rust. meant by the term "rusting."	(1 mark)		
(ii)	The co	ndition(s) necessary for iron to rust.	(2 marks)		
		d diagram(s) for a set up of an experiment which can be used by have stated in (a)(ii), is / are necessary for iron to rust.	d to show that (5 marks)		
		plain observations that would be made if the experimental section have drawn in (b) (i) was allowed to stand for some days.	et up in the (4 marks)		
c) (i) State	two me	ethods by which rusting can be prevented.	(2 marks)		
(ii) Give	one rea	son why rusting must be prevented.	(1 mark)		
13. (a)	Carbon dioxide can be prepared in the laboratory using calcium carbonate and Substance T . (i) Identify T and write equation leading to the formation of carbondioxide.				
	(ii)	With the aid of a labeled diagram, describe how you would sample of carbon dioxide starting from calcium carbonate.			
(b) When bubbled through calcium hydroxide solution, carbon diox form a white precipitate of calcium carbonate according to the forequation;					
	Ca(OH	$C_2(aq) + CO_2(g)$ \longrightarrow $CaCO_3(s) + H_2O(l)$			
	Calculate the mass of dry calcium carbonate that would be obtained if 600cm^3 of carbon dioxide measured at room temperature was bubbled through calcium hydroxide solution. (Ca = 40, C=12, O=16, 1 mole of a gas occupies 24.0dm ³ at room temperature). (02 marks				

- (c) More carbon dioxide was bubbled through a mixture. State what was observed and explain the reaction that took place. ($2\frac{1}{2}$ marks)
- (d) Burning magnesium was lowered into a jar of carbon dioxide. Write an equation for the reaction that took place. (1½ marks)
- 14. (a) Draw a labelled diagram to show the structure of an atom. (2½ mks)
 - (b) (i) State how the total number of electrons in an atom compares with the total number of protons. (01mk)
 - (ii) Explain how the comparison you have stated in b(i) affects the charge of the particle. (2½ mks)
 - (c) The full symbols of two atoms of an element ${}^{16}_{8}A$ and ${}^{18}_{8}B$:
 - (i) State the group in the periodic table to which the element belongs. (01mk)
 - (ii) Determine the number of neutrons in A and B respectively.(02mks)
 - (iii) State what the atoms A and B are called. (½ mk)
 - (d) The atomic numbers of elements T, X and Y are 1, 6 and 11 respectively.

 Write the electronic structure of the atom of each of the elements.(1½ mks)
 - (e) T can react with both X and Y to form compounds:
 - (i) Using outer most energy level electrons only, draw a diagram to show the formula of the compound that can be formed when T reacts with X. (02mks)
 - (ii) Suggest a suitable solvent for the compounds that can be formed when T reacts with X and Y respectively; and give a reason for your choice of the solvent in each case.

END